Solution,
Potential difference (p.d)=200V
magnetic field (B)=0.3T
Radius of path (r)=?
We know that,
- \[ Charge=(q)=e= 1.6×10^{-19}C\]
- \[ mass -of- electron=(m)=9.1×10^{-31}Kg\]
- \[Specific-charge =(e/m)= 1.75×10^{11}cKg^{-1}\]
According to work energy theorem ,
Workdone (w) =∆KE
\[q×v=\frac{1}{2}mv^{2}\]
\[v=\sqrt{\frac{2ev}{m}}\]
Magnetic force( FB ) = Centripetal force( FC )
\[q×v×B=\frac{mv^{2}}{r}\]
Or , \[r=\frac{mv^{2}}{q×v×B}\]
Or \[r=\frac{mv}{q×B}\]
Or,\[r=\frac{m}{e×B}×\sqrt{\frac{2eV}{m}}\]
Or,\[r=\sqrt{\frac{2V}{\frac{e}{m}×B^{2}}}\]
Or,\[r=\sqrt{\frac{2×200}{\frac{1.6×10^{-19}}{9.1×10^{-31}}×(0.3)^{2}}}\]
Therefore Radius of an electron is :
\[r=1.12×10^{-5}m\]
0 Comments
Feel free to comment here.